在 Kafka 中,默认情况下消息是按分区进行顺序存储和读取的,但全局顺序消费(即所有分区的消息按顺序消费)较难实现。下面分别介绍 Kafka 按分区顺序消费以及实现全局顺序消费的相关内容。
按分区顺序消费
Kafka 本身可以保证单个分区内的消息是顺序写入和顺序读取的,以下是其原理和实现要点:
原理
- 消息写入:Kafka 生产者在发送消息时,如果指定了分区,消息会被顺序追加到该分区的日志文件末尾。Kafka 的分区日志是一个只允许追加写入的文件,这种设计保证了消息在分区内的顺序性。
- 消息读取:Kafka 消费者从分区中按偏移量(offset)顺序读取消息,偏移量是消息在分区内的唯一标识,消费者按照偏移量从小到大的顺序读取消息,从而保证了消息消费的顺序性。
实现要点
- 生产者配置:生产者在发送消息时,需要明确指定消息要发送到的分区。可以通过自定义分区器或者直接指定分区号来实现。
import org.apache.kafka.clients.producer.*;
import java.util.Properties;
public class OrderedProducer {
public static void main(String[] args) {
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
Producer<String, String> producer = new KafkaProducer<>(props);
String topic = "test-topic";
int partition = 0; // 指定分区号
for (int i = 0; i < 10; i++) {
ProducerRecord<String, String> record = new ProducerRecord<>(topic, partition, "key-" + i, "value-" + i);
producer.send(record);
}
producer.close();
}
}
- 消费者配置:消费者需要确保按顺序处理消息,并且在处理完一条消息后再处理下一条消息。同时,要避免手动调整偏移量,以免破坏消息的顺序。
import org.apache.kafka.clients.consumer.*;
import java.time.Duration;
import java.util.Collections;
import java.util.Properties;
public class OrderedConsumer {
public static void main(String[] args) {
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("group.id", "test-group");
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("auto.offset.reset", "earliest");
KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
String topic = "test-topic";
consumer.subscribe(Collections.singletonList(topic));
try {
while (true) {
ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(100));
for (ConsumerRecord<String, String> record : records) {
System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
// 处理完一条消息后再处理下一条
}
consumer.commitSync(); // 同步提交偏移量
}
} finally {
consumer.close();
}
}
}
全局顺序消费
要实现全局顺序消费,需要将所有消息发送到同一个分区,因为 Kafka 只能保证单个分区内的消息顺序性。但这种方式会带来性能瓶颈,因为单个分区的处理能力是有限的。
实现要点
- 生产者配置:生产者需要将所有消息都发送到同一个分区,可以通过自定义分区器来实现。
import org.apache.kafka.clients.producer.*;
import java.util.Properties;
public class GlobalOrderedProducer {
public static void main(String[] args) {
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
props.put("partitioner.class", "com.example.SinglePartitionPartitioner");
Producer<String, String> producer = new KafkaProducer<>(props);
String topic = "test-topic";
for (int i = 0; i < 10; i++) {
ProducerRecord<String, String> record = new ProducerRecord<>(topic, "key-" + i, "value-" + i);
producer.send(record);
}
producer.close();
}
}
// 自定义分区器,将所有消息发送到同一个分区
class SinglePartitionPartitioner implements Partitioner {
@Override
public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
return 0; // 所有消息都发送到分区0
}
@Override
public void close() {}
@Override
public void configure(java.util.Map<String, ?> configs) {}
}
- 消费者配置:只需要一个消费者实例来消费该分区的消息,避免多个消费者同时消费同一个分区导致的顺序问题。
import org.apache.kafka.clients.consumer.*;
import java.time.Duration;
import java.util.Collections;
import java.util.Properties;
public class GlobalOrderedConsumer {
public static void main(String[] args) {
Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092");
props.put("group.id", "test-group");
props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
props.put("auto.offset.reset", "earliest");
KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
String topic = "test-topic";
consumer.subscribe(Collections.singletonList(topic));
try {
while (true) {
ConsumerRecords<String, String> records = consumer.poll(Duration.ofMillis(100));
for (ConsumerRecord<String, String> record : records) {
System.out.printf("offset = %d, key = %s, value = %s%n", record.offset(), record.key(), record.value());
// 处理完一条消息后再处理下一条
}
consumer.commitSync(); // 同步提交偏移量
}
} finally {
consumer.close();
}
}
}